wjec cbac

MARKING SCHEME

SUMMER 2018

LEVEL 2 CERTIFICATE IN ADDITIONAL MATHEMATICS 9550/01

© WJEC CBAC Ltd.

INTRODUCTION

This marking scheme was used by WJEC for the 2018 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

ADDITIONAL MATHEMATICS SUMMER 2018

			Comment
1	(a) $40x^7 - 3 - (1)x^{-2}$ (+0)	B4	B1 for $40x^7$ (not $8 \times 5x^7$), B1 for -3, B1 for $-(1)x^{-2}$ and B1 for $+0$ (or blank) provided at least one other mark
			awarded.
			If B4 penalise further incorrect working -1, e.g. treat further incorrect work with term $-(1)x^{-2}$ as ISW unless B4
		R1	CAO Index needs to be simplified ISW
	(b) $\frac{1}{10}$ "or equivalent	B1	CAO. Index and coefficient need to be simplified. ISW
	(C) -18x of $-18/x$		1
_		6	Penalise including '+c' -1 only throughout
2	(7x + 1)(2x - 1)	B 2	B1 $(7x - 1)(2x + 1)$ or 7x(2x - 1) + 1(2x - 1) or $2x(7x + 1) - 1(7x + 1)$
			$\frac{7}{2}(2x-1) + 1(2x-1) \text{ of } 2x(7x+1) - 1(7x+1)$ Ignore sight of "=0"
	-1/7 with 1/2	B2	Must be from factorising, do not accept use of quadratic
			formula followed by 'factorising'. MUST FT for their
			factors ET for their factors provided equivalent difficulty, not
			leading to whole number solutions. B1 for each answer
		4	
3	(a) 1/64	B2	No marks if no working. B1 for sight of 4^{-3} or 2^{-6} or $\frac{1}{4^3}$ or
			1/2°. Mark final answer
	(b) $\frac{1}{12} \times \frac{12 + \sqrt{11}}{12 + \sqrt{11}}$	M1	No marks if no working.
	$= \frac{12 + \sqrt{11}}{122}$	A1	Mark final answer
	133	4	
4	(a) $30x^{7/5}$	B1	ISW Allow $30x^{1_{2/5}}$
	4/5	BI	ISW
	(b) 6x		
	(c) Correctly extracting a factor of $(3)x^{1/7}$	MI	At least 2 terms within the numerator brackets must be
	OR		For an alternative method $6x^{2/7} + 3x^{4/7} + 6x^{1/7}$
	correct alternative method with one correct		$\frac{6x^{1/7}}{6x^{1/7}}$ $\frac{6x^{1/7}}{6x^{1/7}}$
	step towards simplification		award M1 only when at least 2 of these 3 fraction has been
			simplified correctly
	$x^{1/7} + 16x^{3/7} + 1$ or $2x^{1/7} + x^{3/7} + 2$	A1	CAO. Mark final answer
	$\begin{array}{c} x + 72x + 1 & \text{OI} & \frac{2x + x + 2}{2} \\ \end{array}$	4	
5	(a) $2(-3)^3 - (-3)^2 + 2(-3) + 1$ (= -54-9-6+1)	- M1	Or division method giving $2x^2 - 7x \dots$
	-68	A1	
	$(\mathbf{b})(\mathbf{i})$ Substitute $\mathbf{x} = 2$	M1	Or division method giving $x^2 - 8x$
	(b)(f) Substitute $x = -2$ Showing $f(-2) = 0$	Al	Accept sight of substitution with '=0' shown
	(2) (-2) $($	M1	
	(11) $(X+2)(X + bX + c)$ or intention to divide by $(x+2)$ with x^2 shown	MI	appropriate sight of -8x or -33 implies M1 (and A1 to
			follow)
	$((\mathbf{x}+2))$ $(\mathbf{x}^2 + \mathbf{x} + 2\mathbf{z})$	42	A1 for -8v or -33
	((AT2))(A - 0A - 33)	AL.	Or use of factor theorem A1 (x +3). A1 (x -11)
	((x+2)) $(x+3)(x-11)$	A1	CAO, but ignore sight of "=0", ISW
		ð	

6	Sight of sin $60^\circ = \sqrt{3/2}$	B1	
	(Perpendicular height =) $8 \times \sin 60^{\circ}$ OR	M1	OR perpendicular height = $\underline{8\sqrt{3}}$ (cm)
	$\sin 60^\circ = (\text{perpendicular}) \text{ height/8}$		2
	(Area of the parallelogram =) $17 \times 8 \times \sqrt{3/2}$	m1	Or equivalent, e.g. $13 \times 4\sqrt{3} + 4 \times 4\sqrt{3}$
	(Area of the parallelogram =) $68\sqrt{3}$ (cm ²)	A1	CAO
			Alternative (split as 2 triangles with $\frac{1}{2}$ abSinC used):Sight of sin $60^\circ = \sqrt{3/2}$ B1(Area of triangle(s) =)(2 ×) $\frac{1}{2} × 8 × 17 × sin60^\circ$ M1(Area parallelogram =)2 × $\frac{1}{2} × 8 × 17 × \sqrt{3/2}$ m1(Area of the parallelogram =) $68\sqrt{3}$ (cm ²)A1 CAO
	QWC2: • Candidates will be expected to present work clearly, with words explaining process or steps	QWC 2	QWC2 Presents relevant material in a coherent and logical manner, using acceptable mathematical form, and with few if any errors in spelling, punctuation and grammar.
	 make few if any mistakes in mathematical form, spelling, punctuation and grammar in their answer 		QWC1 Presents relevant material in a coherent and logical manner but with some errors in use of mathematical form, spelling, punctuation or grammar OR
	QWC1: Candidates will be expected to • present work clearly, with words avalations preserve on stores		acceptable mathematical form, with few if any errors in spelling, punctuation and grammar.
	OR • make few if any mistakes in		QWC0 Evident weaknesses in organisation of material, and errors in use of mathematical form, spelling,
	mathematical form, spelling, punctuation and grammar in their		punctuation or grammar.
	final answer		
7	$(\mathbf{x} + 0)^2$ (+)	0 M1	In parts (their $(+)$)' or (-0) '
'	$(\Lambda \pm 2)$ $(\pm \dots)$	IVII	Do not accept method $dv/dx = 2x+18$
	(Minimum value at $x =$) -9	A1	CAO
	(Minimum value is) (+) 11	Al	CAO
		3	

8	$2x + 3 = 5x^2 + 6x - 7$	M1	
	$5x^2 + 4x - 10 = 0$	A1	Must be equated to zero.
			'=0' may be implied in further work to solve, if no further
			work and not '=0' then A0
			FT provided their quadratic does not factorise and
			equivalent level of difficulty
	$x = -4 \pm \sqrt{(4^2 - 4 \times 5 \times -10)}$	m1	Use of correct quadratic formula, allow 1 slip in
	2×5		substitution (not a slip with the formula)
			If completing the square used award m1 for sight of $\frac{1}{2}$
		. 1	$5(x + 4/10)^2 \pm \dots$
	$x = -4 \pm \sqrt{216}$	AI	
	10	A 1	Allow truncation from correct working
	x = 1.069 or $x = 1.07$ and $x = 1.97$	AI	Anow truteation from correct working
	x = -1.8090r $x = -1.87$		
	y = 1.07 with $y = 5.14$	A1	FT provided M1, m1 previously awarded using their
	and $x = -1.87$ with $y = -0.74$		values of x in $2x + 3$ or equivalent to find y-values to 2
	and x = 1.07 with $y = 0.74$		d.p.
			Accept answers given as coordinates
			Alternative using $x = (y - 3)/2$
			M1 $y = 5(\underline{y-3})^2 + 6(\underline{y-3}) - 7$ or equivalent
			$\begin{array}{c} 2 \\ 1 \\ 5 \\ x^2 \\ 2 \\ 2 \\ x \\ 10 \\ - 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $
			A1 Sy - 22y - 19 = 0 or equivalent (equate to zero) m1 $y = (22\pm \sqrt{(22)^2} / \sqrt{5} \times 10)/(2\times 5)$ or equivalent
			$y = \{22\pm ((-22) - 4 \times 5 \times -19)\}/2 \times 5 \text{ of equivalent}$ Allow 1 slip in substitution
			A1 $y = (22+\sqrt{864})/10$ or equivalent
			A1 $y = 5139$ or $y = 514$
			and $y = -0.739$ or $y = -0.74$
			A1 $x = 1.07, y = 5.14$ with $x = -1.87, y = -0.74$
			FT to final A1, provided M1, m1 previously awarded
			using their values of y in $(y - 3)/2$ or equivalent to find
			x-values to 2 d.p.
		6	
9	Diagonal = 5 (cm) or $\frac{1}{2}$ diagonal = 2.5 (cm)	B1	
	Permendicular beight² = 6^2 2.5 ² or	M1	ET 'their derived 2.5' provided $\neq 2.4$ or 5
	Perpendicular height = $\sqrt{6^2 - 2.5^2}$ (= $\sqrt{29.75}$)	1011	F1 then derived 2.5, provided $\neq 5, 4$ or 5
	(0 - 2.5)(-329.75)		
	Perpendicular height is 5.45(cm) or	A1	
	5.5(cm)		
		3	
10	(a) $480x^{14}$	B2	B1 for sight of $32x^{15}$. FT to 2^{nd} B1 from dy/dx = kx ⁿ
			Ignore incorrect notation
		D.1	
	(b) For sight of $(dy/dx =) 3ax^2 + 2bx + c OR$	BI	May be implied by 2 or 3 correct values
	$(y =) \frac{12x}{2} + \frac{4x}{2} + x (+ \text{ constant})$		
	5 2	D2	R2 for any 2 or 3 values correct or
	a = 4 b = 2	БЭ	B2 for any 2 or 5 values correct, or B1 for 1 value correct
	$U \equiv 2$		However do not award for $c = 1$ if $a = 12$ and $b = 4$
	c = 1 d = 3		$10^{10} \times 10^{1}$ and 10^{10} \times 10^{1} and 10^{10} = 1^{11} and 12 and 0 = 4
	u – 5		For 'd' FT from 'their $10 - a - b - c'$
			Accept sight of correct answers from 'uncorrected'
			working
			Only accept embedded answers if clearly stated
			unambiguously
		6	-

11	(a) $(AB^2 =) (16-8)^2 + (106)^2 (=8^2 + 16^2)$	M1	Or equivalent. Allow 1 slip in sign of substitution
	$AB = \sqrt{320}$ $= 8\sqrt{5}$	A1 B1	CAO. Allow for sight of 17.88 or 17.9 FT 'their AB' of equivalent difficulty expressed correctly, e.g. $\sqrt{272} = 4\sqrt{17}$, needs to be in the form $a\sqrt{b}$ where $a\neq 1$ and $b\neq 1$ or simpler Sight of $8\sqrt{5}$ implies previous $\sqrt{320}$
	(b) Gradient AB $(16-8)/(10-6)$ = $8/16$ (= $\frac{1}{2}$) Gradient perpendicular -16/8 (= -2)	M1 A1 B1	Or equivalent CAO. Mark final answer and then FT FT -1/grad AB
	(10 + - 6)/2, (16 + 8)/2 Midpoint AB (2, 12) or equivalent	M1 A1	Accept (2,) or (, 12) CAO
	Use of y=mx+c or y-y ₁ = m(x-x ₁) or m = $\underline{y-y_1}$ x-x ₁	M1	Method to find the equation using midpoint and perpendicular gradient (not 8/16 or $\frac{1}{2}$ or 'their gradient') FT their midpoint (not A or B) & their perpendicular gradient, or FT substitution of their midpoint with their perpendicular gradient in $y = mx + c$ (towards finding c) If no working for finding gradient is seen, then 'their 'spurious' incorrect perpendicular gradient' must be negative
	y - 12 = -2(x - 2) or other unsimplified linear correct equation (not quotient form)	A1	FT for correct unsimplified form, not written in quotient form
	y = -2x + 16	A1 11	CAO
12	$\frac{12x^{6}/6 + 24x^{4}/4 - 2x + 4x^{-4}/-4}{2x^{6} + 6x^{4} - 2x - x^{-4} \text{ or } 2x^{6} + 6x^{4} - 2x - 1/x^{4} + c \text{ (constant)}}$	B4 B1 B1 6	B1 for each term ISW from correct unsimplified form. CAO simplified form Awarded only if at least B1 is awarded for integration
13	$(dy/dx=) 6x2 + 24xdy/dx = 0 ext{ or } 6x2 + 24x = 0x = 0 ext{ and } y = 11x = -4 ext{ and } y = 75$	B1 M1 A1 A1	FT their dy/dx from $ax^2 + bx$ throughout If A0, A0 here, award A1 for $x = 0$ with $x = -4$ Answer only, no working shown M0 A0 A0 Method for determining min or max MUST be shown,
	$d^2y/dx^2 = 12x + 24$	M1	Or first derivative test, interpretation of first derivative test. Or alternative. FT 'their dy/dx' for M1 provided equivalent difficulty
	At (0, 11) $d^2y/dx^2 > 0$, point is a minimum At (-4, 75): $d^2y/dx^2 < 0$, point is a maximum	A1 A1	FT for 'their x value' FT for 'their other x value' provided this does not have the same interpretation as the first x value If MOAOAO, award SC1 for correct FT from 'their $d^2y/dx^2 = ax + b$, $a>0$ ' applied correctly provided it leads to 1 maximum and 1 minimum
		7	Do not accept trial & improvement methods unless both stationary points are found correctly and confirmed as stated in the mark scheme

14	$y+\delta y = (x+\delta x)^2 + 13(x+\delta x)$	B1	Or alternative notation. Allow if final bracket omitted
	Intention to subtract (y=) $x^2 + 13x$ to find δy	M1	
	$\delta y = 2x\delta x + (\delta x)^2 + 13\delta x$	A1	Accept δx^2 as meaning $(\delta x)^2$
	Dividing by δx and (lim) $\delta x \rightarrow 0$	M1	FT equivalent level of difficulty
	$dy/dx = \lim \delta y/\delta x = 2x + 13$	A1	CAO. Must follow from correct working
	$\delta x \rightarrow 0$		Use of dy/dx throughout or incorrect notation
		5	then possible maximum is only 4 marks, final A0
15	(a) General cosine curve intersecting x-axis	M1	Allow general shape as the joining of key values, but
10	only at $(90^{\circ}.0)$ and $(270^{\circ}.0)$		straight rather than clearly curving towards a turn at 0°.
			180° and 360° in particular
	Correct curve with 6 and -6 on y-axis	A1	Must show a clear curve, not straight at turning points
	(b) 99.59(°) and 260.4059(°) only	B2	Accept rounded or truncated
			These values need to be selected, not amongst others
			unless unambiguously indicated as the response. D1 for sight of 00.50 (2) or $2(0.4050$ (2)
		4	B1 for signt of 99.59(*) of 260.4059(*)
16	Intention to integrate	4 M1	Intention to integrate manipulation given hence not
10	Intention to integrate	1011	using given or differentiated
	$-x^{3}/3 + 2x^{2}/2 + 3x$	A2	Ignore sight of '+C.
			A1 one term correct.
	Use of correct limits 3 & -1 in correct order	m1	
	and intention to subtract		
	$10\frac{2}{3}$ or equivalent	Al	CAO. Allow $10.66()$ or 10.7 , do not allow 10.6
			Do not accept $10\frac{2}{3} + C$
			Answer only gets no marks
		5	two marks for use of the trapezium rute
17	When $x = 2$, finding $y = 1$	B1	
	dy/dx = 12x - 18	M1	
	when $x = 2$ gradient is 6	A1	
	Use of $y - y_1 = m(x - x_1)$ or $y = mx + c$	M1	Method to form equation
	or $m = \underline{y - y_1}$		FT their y value (but not $y=6$) and their derived gradient
	x –x ₁		
		A 1	
	$y - 1 = 6 (x-2)$ or $1 = 6 \times 2 + c, c = -11$		CAO Must be in this form with (-0) written with
	0x - y - 11 = 0	AI	different order or all operations reversed
			Mark final answer
		6	
18	For sight of $\underline{44}$ or $\underline{7}$	B1	
	3x + 5 $3x - 1$		
	2 11 2 2	1.00	
	$2 \times \frac{44}{2} + 3 \times \frac{7}{2}$	M2	M1 for either $2 \times \frac{44}{2\pi}$ or $3 \times \frac{7}{2\pi}$
	3X + 3 $3X - 1$		3X + 3 $3X - 1$
	$2 \times 44(3x - 1) + 3 \times 7(3x + 5)$ as a numerator	A1	FT from M1 provided there is a sum of 2 terms with
			equivalent level of difficulty denominators
	(3x + 5)(3x - 1) as a denominator	A1	
	327x + 17	A1	CAO. Mark final answer
	(3x+5)(3x-1)		If the denominator is expanded it must be correct
1		6	

Differentiating from first principles. Marking guide. 014

	Q14.			
14	$y+\delta y = (x+\delta x)^2 + 13(x+\delta x)$	B1	Or alternative notation. Allow if final bracket omitted	
	Intention to subtract (y=) $x^2 + 13x$ to find δy	M1		
	$\delta y = 2x\delta x + (\delta x)^2 + 13\delta x$	A1	Accept δx^2 as meaning $(\delta x)^2$	
	Dividing by δx and (lim) $\delta x \rightarrow 0$	M1	FT equivalent level of difficulty	
	$dv/dx = \lim \delta v/\delta x = 2x + 13$	A1	CAO. Must follow from correct working	
	$\delta x \rightarrow 0$		Use of dy/dx throughout or incorrect notation then	
		5	possible maximum is only 4 marks, final A0	

B1 For sight of $(x+\delta x)^2 + 13(x+\delta x)$ or $(x+h)^2 + 13(x+h)$ or using alternative notation. This mark is given whether $(x+\delta x)^2 + 13(x+\delta x)$ stands alone or is embedded in an expression or a formula.

M1 For the <u>intent</u> to subtract $x^2 + 13x$ from the above.

So $(x+\delta x)^2 + 13(x+\delta x) - x^2 + 13x$ will gain the M1 even though there are missing brackets.

It can also be awarded to those who have expanded $(x+\delta x)^2 + 13(x+\delta x)$ and then crossed out the x^2 term and the +13x term.

Those who reverse the subtraction will gain M0 unless there is evidence later on of dividing by $-\delta x$.

For sight of $2x\delta x + (\delta x)^2 + 13\delta x$ (Accept δx^2 as meaning $(\delta x)^2$) with no other A1 terms. Treat as a CAO.

 $2x + \delta x + 13$ will imply the above if division by δx has already been done.

M1 A FT, if of equivalent difficulty, is possible for this M1 (but not the subsequent A1).

A correct division by δx has to be done

(so if a FT it has to be correct for their $2x\delta x + (\delta x)^2 + 13\delta x$)

AND we must see 'lim $\delta x \rightarrow 0$ ' OR ' $\delta x \rightarrow 0$ ' OR ' δx tends to 0'.

It is M0 for ' $\delta x = 0$ ' OR ' $\delta x \approx 0$ ' OR ' δx is so small we can forget about it'.

All of the above marks can be gained even if there is no l.h.s. shown.

Final A1. Must be for a 'text book' quality presentation. E.g. Has to be a correct l.h.s. for each line, ' δy ' or ' $\delta y/\delta x$ '

AND at some point 'dv/dx = $\lim \frac{\delta y}{\delta x}$ ' or 'dy/dx = $\lim \frac{2x + \delta x}{\delta x + 13}$ ' δx→0

δx→0