MATHEMATICS 2 nd S Unit 2 (Calculator allowed		Mark	MARK SCHEME Comments (Page 1)
1. Correct construction of		B2	With sight of accurate 'method arcs'. B1 for sight of 'method arcs' but not drawn accurately.
Correct construction of 90°.		B2	With sight of accurate 'method arcs'. B1 for sight of 'method arcs' but not drawn accurately.
Correct bisector of	90°.	B1	With sight of accurate 'method arcs'. FT 'their 90°' Penalise –1 if angles drawn at incorrect positions or if triangle not completed.
2. TRUE		5 B2	B1 for 3 correct.
TRUE		DZ	
FALS		2	
3.		2	Correct evaluation regarded as enough to identify if negative or positive. If evaluations not seen accept 'too high' or 'too low'.
One correct evaluation 2 ≤		B1	$\frac{x}{x} = \frac{x^3 - 6x - 4}{x^3 - 6x - 4}$
2 correct evaluations $2.65 \le x \le$		B1	2 –8
one 2 correct evaluations $2.65 \le x \le$	< 0 and one > 0.	M1	2.1 -7.339
	< 0 and one > 0.	IVIII	2·2 –6·552 2·3 –5·633
		• •	2·4 –4·576
(<i>x</i> =) 2·7		A1	2.5 -3.375
			2.6 –2.024
			2·55 –2·718
			2·7 –0·517 2·65 –1·290
			2.8 1.152
			2·75 0·296
			2·9 2·989
		4	3 5
4.(a) 9 2 6			
6 in corr	ect position. ect position. ect position.	B1 B1 B1	FT 8 – 'their 2'. FT 17 – 'their 2' – 'their 6'.
(b) 6		B1	
(c) <u>17</u> 45		B2	FT 'their total' for planning. B1 for a correct numerator only in a fraction <1. B1 for a denominator of 45 in a fraction <1.
		6	

MATHEMATICS 2 nd SAMs 2017		MARK SCHEME	
Unit 2 (Calculator allowed) Higher Tier 5. Correct statement of Pythagoras' Theorem	M1	Comments (Page 2)	
$PR^2 = 18 \cdot 4^2 - 12 \cdot 5^2$		Also M1 for $18 \cdot 4^2 = PR^2 + 12 \cdot 5^2$.	
= 182.31		Or for sight of $\sqrt{182.31}$	
(<i>PR</i> =) 13·5(cm)	A1 A1		
	3		
6. Sight of $2a + 3c = (\pounds)71.5(0)$ AND $3a + 4c = (\pounds)101$	B1	Accept their choice of variables for <i>a</i> and <i>c</i> .	
or equivalent Correct method to eliminate one variable.		FT 'their equations' if of equivalent difficulty. Allow 1 error in one term, not one with equal coefficients.	
First variable found $a = (\pounds)17$ or $c = (\pounds)12.5(0)$	A1		
First variable found $a = (\pounds)17$ or $c = (\pounds)12.5(0)$ Substitute to find 2 nd variable	M1	FT 'their 1 st variable'.	
Second variable found $c = (\pounds)12.5(0)$ or $a = (\pounds)17$	A1		
(4 adults and 2 children pay) £93	A1	FT their values if both M marks gained. ' \mathfrak{L} ' required.	
	6		
7.(a) $(x-7)(x+3)$	B2	B1 for (x 7)(x 3).	
x = 7 AND $x = -3$	B1	Strict FT from their brackets.	
	B2	B1 for 1 error. FT until 2 nd error.	
(b) $\frac{2x - 14 + 2x + 5}{(8)} = \frac{4}{(8)}$ or equivalent.			
4x - 9 = 4 or equivalent.	B1		
$x = \underline{13}$ or $3 \underline{1}$ or equivalent.	B1	Mark final answer.	
4 4	7		
8. $D\hat{A}C = 36(^{\circ})$	B1	May be seen on diagram.	
Angles in the same segment are equal.	E1	Accept unambiguous statement of this fact.	
$DC = 5.1 \times \tan 36$	M1	Accept $DC / 5.1 = \tan 36$.	
Angle subtended at the circumference by a	E1	Accept unambiguous statement of this fact.	
semicircle is 90(°).			
<i>DC</i> = 3·7()(cm)	A1		
	5		
9. (Least possible distance =) 399.75 (m)	B2	All four correct values.	
(Greatest possible distance =) 400·25 (m) (Least possible time =) 73·5 (seconds) (Greatest possible time =) 74·5 (seconds)		B1 for any 2 correct values.	
(Least possible av. Speed =) $\frac{399 \cdot 75}{74 \cdot 5}$	M1	One correct use of formula. FT their values.	
OR (Greatest possible av. Speed =) $\frac{400.25}{73.5}$			
= 5·36(5) AND 5·44(55) (m/s)	A2	2 distinct values.	
Organisation and communication	OC1		
Accuracy of writing	W1		
	7		

MATHEMATICS 2 nd SAMs 2017 Unit 2 (Calculator allowed) Higher Tier		MARK SCHEME Comments (Page 3)	
10. (a) $x = 0.49191$ and $100x = 49.19191$ with an attempt to subtract, OR equivalent (e.g. $1000x = -10x$)		OR 48.7 / 99	
<u>487</u> 990		Mark final answer.	
(b) False, AND a correct reason e.g. 'a needs to be a cube number for it to yield an integer' or a counter-example e.g. $6^{\frac{2}{3}} = \sqrt{36}$ and 36 is not a cube number.			
(c) (i) $10\sqrt{2}$ (ii) $4\sqrt{5}$	B1 B1		
	5		
11. <u>40</u> × the number of employees in any category. 260	M1		
MaleFemaleFull-time195Part-time313	A2 3	A1 for any 2 or 3 correct answers.	
12. (a) Tangent drawn	S1		
Idea of increase in y / increase in x	M1		
Gradient from a reasonable tangent $\frac{1}{2}$	A1		
m/s^2 OR ms^{-2} (b) Split into 6 areas and attempt to sum (Area =)	U1 M1		
¹ / ₂ ×10(0+2×10+2×30+2×32+2×33+2×39+40) = 1640(m)	M1 A1	Or equivalent. Award for up to 1 error in reading scale. CAO.	
- 1040(m)			
	7		
13. $(l^2 =) 10^2 + 5^2$ $l^2 = 125$ OR $(l =) \sqrt{125}$	M1 A1		
(I = 123) OK $(I = 11.1(803)$ or 11.2	A1		
(Surface area =) $\pi \times 5 \times 11 \cdot 1(803) + 2\pi \times 5 \times 8 + \pi \times 5^{2}$ = 505 to 506 (cm ²)	M2	FT <i>'their I</i> '. M1 for any 2 of the 3 terms.	
	A1		
	6		
14. (a) $3(x + 1) - 5(2x - 1)$ as numerator AND ($2x - 1$)($x + 4$) as denominator. OR multiply throughout by ($2x - 1$) and ($x + 4$)	M2	Brackets required or implied later. M1 for either correct numerator or denominator, or multiply throughout with 1 error.	
3(x + 4) - 5(2x - 1) = 6(2x - 1)(x + 4)	A1		
(b) $x = \frac{-49 \pm \sqrt{49^2 - 4 \times 12 \times (-41)}}{2 \times 12}$	A1 M1	Convincing i.e. need to see at least $12x^2 + 42x - 24$ Allow one error, in sign or substitution, but not in the formula.	
$x = \frac{-49 \pm \sqrt{4369}}{24}$	A1	CAO.	
x = 0.71 and $x = -4.80$	A1	CAO.	
	7		

MATHEMATICS 2 nd SAMs 2017 Unit 2 (Calculator allowed) Higher Tier	Mark	MARK SCHEME Comments (Page 4)	
15. Use of $\frac{1}{2}$ absinC followed by cosine rule	S1		
$24.25 = \frac{1}{2} \times 12.7 \times AD \times \sin 132^{\circ}$	M1		
AD = (2 × 24·25)/(12·7 × sin132°)	m1		
<i>AD</i> = 5 13(883) or 5 14 (cm)	A1		
AD = 5.13(883) or 5.14 (cm) $DB^2 = 12.7^2 + AD^2 - 2 \times 12.7 \times AD \times \cos 132(^{\circ})$	M1	FT provided M1 awarded.	
$DB^2 = 275(.036)$	A1		
<i>DB</i> = 16·5(842) or 16·6 (cm)	A1		
		Alternative solution (using a new point E which vertically above D):	is
		DE = area / 12 7 = 3 819(cm)	S1
		AE = DE / tan48(°) = 3.439(cm)	M1
		BE = AE + AB =16 139(cm)	<i>m</i> 1
		Using Pythagoras, $DE^2 + BE^2 =$	M1
		275.05	A1
		BD = 16·5(8) or 16·6 (cm)	A1
	7		