

GCE A LEVEL - NEW

1500U40-1

2 hours

COMPUTER SCIENCE – A2 unit 4Computer Architecture, Data, Communication and Applications

THURSDAY, 22 JUNE 2017 – MORNING

For Examiner's use only			
Question	Maximum Mark	Mark Awarded	
1.	8		
2.	5		
3.	9		
4.	7		
5.	7		
6.	10		
7.	13		
8.	9		
9.	7		
10.	8		
11.	6		
12.	11		
Total	100		

ADDITIONAL MATERIALS

A WJEC pink 16-page answer booklet. A calculator.

INSTRUCTIONS TO CANDIDATES

Answer all questions.

Write your answers in the separate answer booklet provided.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question; you are advised to divide your time accordingly.

The total number of marks available is 100.

Assessment will take into account the quality of written communication used in your answers.

Answer all questions.

1. Two tables have been created in a database using SQL commands. They are:

CUSTOMER CustNum 12455 13670 14777 14756 21328	CustName McClintock Storey Rice Radford George	DateOfFlight 02-Dec-17 03-Jun-17 23-Aug-17 28-Feb-17 18-Jan-17	FlightNum 370 378 345 370 378
FLIGHT FlightNum 370 345 378	Destination Rome Florida Bahrain	Terminal 1 5	

- (a) Write an SQL command to output the names and flight numbers of all the customers. [1]
- (b) Write an SQL command to output all details of customers who are on flight number 370.[1]
- (c) Write an SQL command to output the names of all the customers flying from Terminal 1. [2]
- (d) Write an SQL command to create a new table FREQUENTFLYER to contain the Customer Number and Frequent Flyer points of each customer. [2]
- (e) Write an SQL command to enter the following data into the new table.
 - Customer 21328 should have 210 points
 - Customer 14777 should have 300 points
 [2]
- 2. Describe the advantages of using a distributed database. [5]

- 3. A certain computer has an 8 bit accumulator with the following data stored in memory.
 - Memory location 1A holds the number 0₁₀
 - Memory location 1B holds the number 1₁₀
 - Memory location 1C holds the number 9₁₀

The computer's assembly language instruction set contains the following commands.

Assembly Language Command	Description
LDA X	Load the accumulator with the contents of memory location X
JGT LABEL	Jump to LABEL if the contents of the accumulator are greater than zero
ADD X	Add the contents of memory location X to the accumulator
STA X	Copy the contents of the accumulator to memory location X
CLR	Clear the contents of the accumulator
OUT	Output the contents of the accumulator
DEC X	Decrement the accumulator by the contents of memory location X

- (a) Write a simple program using only the assembly language commands above to output the integers 0₁₀ to 9₁₀. [4]
- (b) Two extra commands are defined as follows:

ASR R	Performs an arithmetic shift right one place on register R
LDR P, Q	Load register P with the contents of memory location Q

Demonstrate what the following fragment of code does, by showing the contents of registers and memory locations at each step. [5]

- Memory location 1D holds the number 0111 1000₂
- Memory location 1E holds the number 0100 0110₂

LDR R, 1D

LDR S, 1E

ASR R

LDA R

ADD S

STA R

© WJEC CBAC Ltd. (1500U40-1) Turn over.

4.	(a)	(a) Explain the meaning of the term parallel processing; your answer should make to how parallel processing carries out a single task.			
	(b)	Give four limiting factors of parallel pro	cessing.	[4]	
5.	(a) Explain the difference between truncation and rounding giving a binary truncation and a denary example of rounding.				
	(b)	State which method generally produce	s a more accurate result.	[1]	
	(c)	Describe how absolute and relative err	ors are calculated when truncating and round	ing. [2]	
6.	(a)		and A ₁₆ into two 8 bit binary numbers, using ton, calculate the binary number that would re		
		You must show all of your working.		[4]	
	(b)	In a certain computer system, real num as shown below.	bers are stored in floating point form using 16	bits	
12 po		in two's complement form. The binary the mantissa is immediately after the	Exponent 4 bits in two's complement form		
		Clearly showing your working, convert	42.875 ₁₀ into this format.	[3]	
	(c)	In a different computer system, real no signed mantissa and a 4 bit signed exp	umbers are stored in floating point form, an a	8 bit	
Clearly showing your working, calculate the decima			e the decimal value of 0.1111011 0101 ₂	[3]	

7.	(a)	When scheduling.	name and describe	the three basic	states of a	process. [6]

- (b) Interrupts cause the operating system to respond to system events. Give **two** examples of common interrupts. [2]
- (c) Describe a single buffer and a double buffer. Explain the role of a single buffer and a double buffer. Explain why double buffering is usually preferred. [5]
- **8.** Cryptography uses asymmetric or symmetric encryption methods.

Symmetric encryption methods use a single key which encrypts and decrypts data. Asymmetric encryption methods use a public key for encryption and a private key for data decryption.

- (a) Describe the advantages of asymmetric encryption and the advantages of symmetric encryption. [4]
- (b) The Boolean operation XOR is often used in cryptography.

In the 8 bit ASCII character set, the characters OK! are represented by the following binary numbers.

 $O = 01001111_2$ $K = 01001011_2$

 $! = 00100001_{2}$

Use XOR to encrypt the string OK! with the 8 bit binary key 11110011₂ [3]

(c) Describe **two** deficiencies of the key used in question 8(b). [2]

- **9.** A company with a large office building operates a "Bring Your Own Device to Work" (BYOD) scheme allowing employees to use personal devices (e.g. tablet or laptop) on the company's network.
 - (a) Describe the hardware necessary to connect a device to the company's network wirelessly and provide an Internet connection. [3]
 - (b) Identify and describe **two** network applications that could be used by an employee with a connected device. [4]

- **10.** Expert systems are widely used by organisations for a variety of purposes. Describe the benefits to an organisation of using an expert system. [8]
- **11.** Explain the use of multi-level indexes and draw a diagram to demonstrate the operation of a three-level index. [6]
- **12.** Khan's Pharmaceuticals currently uses an ID card system to control employee access to its premises. This has proved problematical with employees swapping cards and the company now wishes to use a voice print recognition system in its place.

Describe how this system would operate and explain the benefits and drawbacks associated with a biometric system used for this purpose. [11]

END OF PAPER

BLANK PAGE